手机浏览器扫描二维码访问
杨辉三角形,一目了然,每个数等于它上方两数之和。
研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”
1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”
1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”
1303年朱世杰说:“第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”
1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”
1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。
可用此性质写出整个杨辉三角。
即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
即C(n+1,i)=C(n,i)+C(n,i-1)。”
1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”
斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”
1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。
11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=。”
1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。
1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”
这个被欧洲人称之为帕斯卡三角形。
1708年的PierreRaymonddeMontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。
1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”
1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。
1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”
后来人们也称呼这是中国三角形。
二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。
其中是亏格为0的欧拉定理。
对图论有重大帮助。
对很多等差,甚至一级数列、二级数列等等有重要研究。
那三维的杨辉三角,肯定会有更加重要的信息。
高维的杨辉三角,肯定更加有价值。
或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。
或许杨辉三角是任何一个数学的终点。
近下来,就需要解决高维杨辉三角的数列问题了。
有没有一种简单的办法来。
其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。
这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?
喜欢数学心请大家收藏:()数学心
徐白,小学开始每天天色没亮的时候就爬起来边走路,边背书,自小学开始一直到大学毕业,不管是网络游戏还是各类小说,不论是影视歌星还是各类八卦,绝对和他沾不上边,真可谓是两耳不闻窗外事,一心只读圣贤书的强人。踏上社会终于看了第一本闲书,于是他的生活变了有道是富家不用买良田,书中自有千钟粟。安居不用架高堂,书中自有黄金屋。出门无车毋须恨,书中有马多如簇。娶妻无媒毋须恨,书中有女颜如玉。男儿欲遂平生志,勤向窗前读六经。...
七年前,她潇洒地丢下100块,带着儿子落跑。七年后,她带着女性杀手的天才儿子回来,没想到被宝贝儿子卖进MBS国际。她的顶头上司竟然是七年前的MR100!坏丫头,七年前你敢这么羞辱我,这次一定让你付出代价!一亿,我买你一生!那我多不划算,买一送一?当腹黑遇上腹黑,外加一个腹黑儿子,拼的是段数级别,拼的是演技,那么,看谁能技高一筹。...
武则天初登大宝。千年前的洛阳城里,鲜红的牡丹怒放,朝阳升起,洒落无数晨曦。繁华之下,掩盖的,又是一次次鲜血淋漓的杀伐。秦少游来了,然后他笑了给我一把菜...
新书叩天门拜请诸位道友支持捧场,白沙拜谢。当铺小二,机缘巧合踏上修仙路。无尽的法宝,神奇的法术,瑰丽的修真界,炼气,筑基,金丹境界何处是尽头?大道万千,殊途同归?请看方言的修仙之旅。—‘琴皇汗舞’道友建了一个位道友可以申请加入。...
一名普通小市民,得到外星人的实验基地,有自我增殖的有机土,消耗大,威力也大的机器人,最恶心的是还有城市一样大小的宇宙舰,赵洪站在宇宙舰上,俯视着下面的修真者和异能者,不屑一笑,大手轻轻一挥,灰飞烟灭!!!(新人,新书,需要大家的支持,你们的一票或是收藏,都是我前进的动力,请在我的动力炉里添柴,让我能走得更远一些!!)...
热血好文!战神回归,搅动都市风云!...