手机浏览器扫描二维码访问
1685年,沃利斯(Wallis)出版了《代数》(DeAlgebra),包含了牛顿二项式定理的最早描述。
它也使哈利奥特的卓越贡献为人所知。
二项式定理,是一个a加b的n次方的展开计算。
沃利斯对牛顿说:“你最近在研究什么?”
牛顿说:“二项式定理。”
沃利斯说:“巴斯卡三角,甚至古中国的杨辉三角而已,还有什么好研究?”
牛顿说:“没什么,仅仅是想前进一步。”
沃利斯笑说:“这些东西有用吗?”
牛顿笑着说:“我觉得有很多用,虽看朴素,但里面蕴藏着很多能量。”
沃利斯说:“比如说?”
牛顿说:“我在想开二次方可以计算,就是不断的将小数点后的数字,先写成5,大的让这个数变成4,小了让这个数变成6。
然后一直不断往后写,就可以慢慢的遍历出个无穷的样子。”
沃利斯说:“那又如何,不用二项式,我蒙着这样乘下去不就可以了?”
牛顿说:“开3次,还用这样的办法的话,就困难了,同时开3次以上的话,就更难了。”
沃利斯说:“继续说。”
牛顿说:“我想吧二项式中的n,从整数变成分数来计算。
也可以。”
沃利斯说:“如果是整数,可以有帕斯卡三角,或者是一种组合公式来表示系数。
分数的你该怎么办呢?”
牛顿说:“很容易,把那个组合公式中的n也变成对应的分数,甚至负数都可以。”
沃利斯抬头开始想牛顿说的这个组合公式的变化。
沃利斯开始去写1加x的负一次方的展开,写成了无穷的形式,等于1减去x的平方加x的二次方减x的三次,一直到无穷。
因为组合方程计算出来的是1和-1这两个数字的交替。
x的奇数次方的系数是负一,x的偶数次方的系数是正一。
疑惑的说:“等等,变成负数我还可以想象,变成分数这还用意义吗?”
牛顿说:“为什么没有意义,也没有人规定一定是整数呀,你脑子太死板,不知道其中的奥秘,这里面有很多有趣的数学意义。”
沃利斯也开始尝试的开始写二分之一次方的组合方程,然后带入到1加x的二分之一次方,也写出了看着复杂一些的无穷的级数。
沃利斯看着这个花里胡哨的东西,对牛顿说:“这个东西有作用吗?看着花哨。”
喜欢数学心请大家收藏:()数学心
徐白,小学开始每天天色没亮的时候就爬起来边走路,边背书,自小学开始一直到大学毕业,不管是网络游戏还是各类小说,不论是影视歌星还是各类八卦,绝对和他沾不上边,真可谓是两耳不闻窗外事,一心只读圣贤书的强人。踏上社会终于看了第一本闲书,于是他的生活变了有道是富家不用买良田,书中自有千钟粟。安居不用架高堂,书中自有黄金屋。出门无车毋须恨,书中有马多如簇。娶妻无媒毋须恨,书中有女颜如玉。男儿欲遂平生志,勤向窗前读六经。...
七年前,她潇洒地丢下100块,带着儿子落跑。七年后,她带着女性杀手的天才儿子回来,没想到被宝贝儿子卖进MBS国际。她的顶头上司竟然是七年前的MR100!坏丫头,七年前你敢这么羞辱我,这次一定让你付出代价!一亿,我买你一生!那我多不划算,买一送一?当腹黑遇上腹黑,外加一个腹黑儿子,拼的是段数级别,拼的是演技,那么,看谁能技高一筹。...
武则天初登大宝。千年前的洛阳城里,鲜红的牡丹怒放,朝阳升起,洒落无数晨曦。繁华之下,掩盖的,又是一次次鲜血淋漓的杀伐。秦少游来了,然后他笑了给我一把菜...
新书叩天门拜请诸位道友支持捧场,白沙拜谢。当铺小二,机缘巧合踏上修仙路。无尽的法宝,神奇的法术,瑰丽的修真界,炼气,筑基,金丹境界何处是尽头?大道万千,殊途同归?请看方言的修仙之旅。—‘琴皇汗舞’道友建了一个位道友可以申请加入。...
一名普通小市民,得到外星人的实验基地,有自我增殖的有机土,消耗大,威力也大的机器人,最恶心的是还有城市一样大小的宇宙舰,赵洪站在宇宙舰上,俯视着下面的修真者和异能者,不屑一笑,大手轻轻一挥,灰飞烟灭!!!(新人,新书,需要大家的支持,你们的一票或是收藏,都是我前进的动力,请在我的动力炉里添柴,让我能走得更远一些!!)...
热血好文!战神回归,搅动都市风云!...